The minimum distance problem for two-way entanglement purification
نویسندگان
چکیده
منابع مشابه
Entanglement purification with two-way classical communication
Quantum information theory and quantum computation study the use of quantum physics in information processing and computation[1]. Many important results such as quantum teleportation, superdense coding, factoring and search algorithms make use of quantum entanglements as fundamental resources [2, 3, 4, 5]. Therefore, entanglement purification protocols, the procedures by which we extract pure-s...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Surprisingly Simple Way of Reversing Trace Distance via Entanglement
Trace distance (between two quantum states) can be viewed as quantum generalization of statistical difference (between two probability distributions). On input a pair of quantum states (represented by quantum circuits), how to construct another pair, such that their trace distance is large (resp. small) if the original trace distance is small (resp. large)? That is, how to reverse trace distanc...
متن کاملMETAHEURISTIC ALGORITHMS FOR MINIMUM CROSSING NUMBER PROBLEM
This paper presents the application of metaheuristic methods to the minimum crossing number problem for the first time. These algorithms including particle swarm optimization, improved ray optimization, colliding bodies optimization and enhanced colliding bodies optimization. For each method, a pseudo code is provided. The crossing number problem is NP-hard and has important applications in eng...
متن کاملTwo Variations of the Minimum Steiner Problem
Given a set S of starting vertices and a set T of terminating vertices in a graph G = (V,E) with non-negative weights on edges, the minimum Steiner network problem is to find a subgraph of G with the minimum total edge weight. In such a subgraph, we require that for each vertex s ∈ S and t ∈ T , there is a path from s to a terminating vertex as well as a path from a starting vertex to t. This p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2006
ISSN: 0018-9448
DOI: 10.1109/tit.2005.862089